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Abstract
Data mining, alternatively denominated as knowledge discovery from data, is a 
relatively young and fast-growing interdisciplinary scientific field. The contribution 
hereafter critically underpins the main approaches and trends in data mining 
applied to functional neuroimaging analysis.
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Introduction
Exploring physical world is aiming to discover the structure in 
experimental data and to reveal the underlying processes from 
which the acquired data have originated. In most practical cases, 
useful information comes out by processing raw data only. 
Besides, real-life measurements provide unknown mixtures of 
interesting and uninteresting signals. A popular saying goes like 
we are living in the information age”, yet we are actually living in 
the data age” [1]. And still, data mining might be regarded as a 
direct development of information technology looking for novel 
approaches in data processing.

Functional neuroimaging data yield valuable information on 
physiological processes, yet being often affected by several 
artifacts including noise, and generally acquired as collections of 
unknown mixtures of signals variably summing up in time and/
or space. In several cases, even the nature of signal sources is a 
question of debate. In most cases, reliable and full information 
is missing, so that a reasonable estimation of plausible solutions 
to identification of original signals falls in the large class of blind 
source separation (BSS) methods [2].

Fundamental Concepts
Some fundamental concepts in data analysis are loosely defined 
hereafter in order to introduce the general context of our 
discussion.

Computer Science (CS) though controversial debates exist 
on the meaning of “computer science”, we accept CS as the 
scientific discipline and practical approach to computation and 
its applications [3]. It entails a systematic exploration of the 
feasibility, structure, expression, and formal reasoning of the 
protocols that reflect the acquisition, representation, processing, 
storage, communication of, and access to information, either 

if information is encoded as bits in a computer memory or 
transcribed engines and protein structures in a human cell. 
Nevertheless, disputes have etymologically stemmed, in the 
sense that there is “no science” in CS as far as CS is not concerned 
with observing nature. In this respect, parts of CS are engineering 
(more practical), and parts are mathematics (more theoretical). 
Contrarily, science refers to laws of nature and natural 
phenomena, whereas phenomena involved in CS are man-made 
[4]. Apart from a consistent definition unanimously agreed upon, 
CS is commonly accepted to consist of some theoretical and 
practical subdomains, as follows.

a)	 Computational complexity theory: addressing fundamentals 
of computational and intractable problems; it is highly abstract;

b)	 Computer graphics: dealing with real-world computer-
assisted visual applications;

c)	 Programming language theory: investigating analytical 
approaches to programming;

d)	 Computer programming: exploring programming languages 
and complex systems;

e)	 Human-computer interaction: designing usable computers 
and computations universally accessible to humans.

The field of Artificial Intelligence (AI) has emerged and developed 
assuming that a specific property of humans, that is, intelligence, 
can be sufficiently well de- scribed to the extent that it can be 
mimicked by a machine. As such, philosophical issues arise 
on the nature of the human mind and, furthermore, on the 



2018
Vol.3 No.2:6

2

ARCHIVOS DE MEDICINA
ISSN 1698-9465

This article is available in: http://translational-neuroscience.imedpub.com

Journal of Translational Neurosciences 
ISSN 2573-5349

ethics of creating artificial systems endowed with human-like 
intelligence, issues which have been addressed by myth, fiction, 
and philosophy since antiquity [5]. AI has been the subject of 
optimism by its inception, still it has also crossed setbacks ever 
since. For the time being, AI constitutes a major component 
of technology and poses several challenging problems at the 
forefront of research in CS.

Mechanical or formal reasoning has been introduced by 
philosophers and mathematicians as well since antiquity, too. 
The study of logic has established a milestone in our society 
by the creation of the digital electronic computer. The starting 
point was marked by the Turing machine [6]. Turing’s theory of 
computation demonstrated that a programmable machine may 
simulate any act of mathematical deduction by manipulating 
simple symbols like ”0” and ”1”. By the same time, discoveries 
in cybernetics, information theory, and significant advances 
in neurology, oriented the interest of the scientific community 
towards evaluating the feasibility of designing an electronic brain.

Data Mining (DM) equates to the extraction of implicit, not a 
priori known, and potentially valuable information from raw data 
[7]. The underlying idea in DM is to build up computer programs 
that seeks for regularities or patterns through databases. Anyway, 
real data are imperfect, incomplete, corrupted, contingent on 
accidental coincidences, and some of no interest whatsoever, 
leading to spurious and inexact predictions. Some exceptions will 
still exist to all rules, as well as cases not covered by any rule. 
Therefore, the algorithms involved in DM must be robust enough 
to cope with imperfect data, yet capable to identify inexact but 
useful regularities [8]. As an analytic process, DM is conceptually 
designed to work in three stages as it follows hereafter.

a)	 Initial exploration of data in search of consistent patterns, as 
well as systematic relationships among variables. The process 
may involve data cleaning, data transformations, and data 
space reduction to a proper subspace by feature selection, 
thereby reducing the number of variables to a meaningful 
and manageable range,

b)	 Developing models based on pattern identification and 
statistical assessment of findings by means of detected 
patterns applied to new data subsets. Ranking models and 
choosing the best one based on their predictive performance, 
that is, explaining the variability in data and providing 
consistent results across samples, 

c)	 Deployment and prediction by using the model previously 
chosen as best to disclose knowledge structures aiming to 
guide further decisions under conditions of limited (if any) 
accessibility and/or certainty.

Machine Learning (ML) is conceptualized as the technical basis of 
DM aiming to discover and describe structural patterns in data. 
In other words, ML is perceived as the acquisition of structural 
descriptions from examples, further employed for prediction, 
explanation, and understanding. Historically, ML was considered 
by Arthur Samuel the subfield of Computer Science (CS) that 
gives computers the ability to learn without being explicitly 
programmed” [9]. Specifically, ML refers to the construction 

and study of computer algorithms that are automatically self-
improving through experience in that they can learn and make 
predictions on data. Such algorithms overcome following strictly 
static program instructions by making data-driven predictions 
or decisions, through building a model from sample inputs. The 
core of ML deals with representation and generalization. Feature 
learning or representation learning is a set of techniques that 
learn a transformation of “raw” inputs to a representation that 
can be effectively further exploited in supervised/unsupervised 
learning tasks. Generalization is the property that the system 
will perform well on unseen data instances; the conditions under 
which this can be guaranteed are a key object of study in the 
subfield of computational learning theory. Contrarily, traditional 
statistical techniques are not adaptive but typically process all 
training data simultaneously before being used with new data. 
In a similar key, Tom Mitchell, another learning researcher, 
proposed back in 1977 a more precise definition for ML in the 
case of well-posed learning problem: “A computer program 
is said to learn from experience E with respect to some task T 
and some performance measure P, if its performance on T, as 
measured by P, improves with experience E” [10]. In a broader 
view, ML is closely related to and overlaps with computational 
statistics, which focuses on prediction-making through the use of 
computers, too. It is also related with mathematical optimization, 
which provides theory, methods, and application domains to the 
field. ML is sometimes conflated with DM regarding prediction, 
although the latter overlaps more on exploratory data analysis 
(EDA) sharing much in common in terms of goal and methods.

Methods
In practice, raw data per se are generally of little (if any) immediate 
usage. It is only when information is extracted via processing that 
makes data meaningful.

Data analysis
Back in ’60s, Tukey advocated that classical statistics leaning 
on analyzing small, homogeneous, stationary data by means 
of known distributional models and assumptions will prove 
inappropriate to deal with the problems raised by the analysis of 
large amount and complex data” [11]. The reason invoked was the 
qualitative difference that might exist between practical larger 
and larger data sets at hand and common smaller ones rather 
than strictly the size [12]. Consequently, functional neuroimaging 
data analysis should primarily rely on methods circumscribed to 
both DM and EDA. Moreover, Huber stated that “. . . there are 
no panaceas in data analysis” [12]. It comes out that an optimal 
choice is domain-dependent (Figure 1). In order to make it clear, 
mathematical problems are considered ill-posed if they do not 
satisfy each of the three criteria: 

a)	 a solution exists, 

b)	 it is unique, and 

c)	 it depends continuously of the initial data. 

To solve ill-posed problems, well posed ness must be restored by 
restricting the class of admissible solutions [13].
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Data mining and exploratory data analysis
DM is an iterative process of exploring and modeling large 
amounts of data aiming to discover baseline patterns and 
relationships among significant variables. As such, DM is called 
to identify trends, predict future events, and assess various 
courses of action that improve system performance. DM is a 
multidisciplinary field importing and boosting ideas and concepts 
from diverse scientific areas like statistics, signal and image 
processing, pattern recognition, mathematical optimization, and 
computer vision. Extracting non-explicit knowledge is fostered 
by advances in several disparate and often incongruous domains, 
such as bioinformatics, DNA sequencing, e-commerce, knowledge 
management remote sensing images, stock investment and 
prediction analysis, and real-time decision making [14].

The main applications of DM span a large range of issues in 
signal processing like adaptive system modeling and information 
mining including applications on biomedical data [15], visual 
data mining [16], scale-space analysis with applications in image 
segmentation [17], chemometrics including artificial neural 
networks (ANNs) [18], characterization of protein secondary 
structure [19], and many more.

Exploratory data analysis (EDA) consists of large set of 
techniques that deal with data informally and disclose structure 
quite straightforward. Data probing is primarily stressed upon, 
in many cases prior to their comparison with any particular 
probabilistic models. Such methods are optimal compromises 
in many circumstances and quite near to optimal solution for 
each individual case. In a typical exploratory approach, several 
variables are critically considered and thoroughly compared by 
means of diverse techniques in search of systematic patterns 
in data. In a more general sense, computational exploratory 
data analysis comprises various methods from a large spectrum 
ranging from simple basic statistics to advanced multivariate 
exploratory techniques. Basic statistical exploratory analysis 
includes techniques like: 

a)	 inspecting the distribution of variables, 

b)	 comparing the coefficients of the correlation matrices with 
meaningful thresholds, and 

c)	 inspecting multi-way frequency tables.

Some frequent approaches in multivariate exploration are listed 
hereafter.

a)	 Principal Component Analysis (PCA) [20]

b)	 Independent Component (Subset) Analysis (ICA) [21]

c)	 (Fuzzy) Cluster Analysis (FCA) [22,11]

d)	 Factor Analysis (FA) [23]

e)	 Projection Pursuit (PP) [24]

f)	 Discriminant Function Analysis (DFA)

g)	 Partial Least Squares (PLS)

h)	 Multidimensional Scaling

i)	 Log-linear Analysis

j)	 Canonical Variate Analysis

k)	 Correspondence Analysis

l)	 Time Series Analysis

m)	Classification Trees

n)	 Stepwise Linear and Nonlinear Regression

o)	 Continuum Regression

p)	 Multivariate Linear Model (MLM)

q)	 General Linear Model (GLM)

Analytical techniques encompass graphical data visualization 
techniques that can identify relations, trends, and biases usually 
hidden in unstructured data.

In functional brain imaging, EDA methods can identify interesting 
features reporting on brain activations which may be not 
anticipated or even missed by the investigator. Whereas EDA 
performs flexible searching for evidence in data, confirmatory 
data analysis (CDA) is concerned with evaluating the available 
evidence. In imaging Neuroscience, there is a permanent dynamic 
interplay between hypothesis generation on one hand, and 
hypothesis testing on the other hand, that can be regarded as a 
Hegelian synthesis of EDA and CDA [25]. Furthermore, artifactual 
behavior identified easily by EDA may raise questions on

1. data appropriateness, 

2. the necessity of additional preprocessing steps, or 

3. introduction of spurious effects by the preprocessing employed. 

By all means, confirmatory methods are a must for controlling 
both type I (false positives) and type II (false negatives) errors, 
yet their statistical significance is meaningful if both the chosen 
model and the distributional assumptions are correct only.

DM is heavily based on statistical concepts including EDA 

Figure 1 Hypothesis-driven versus model-driven univariate/
multivariate data analysis with benefits (+) and pitfalls 
(-): PCA, FA, PP, CR, ICA, CA, FCA, CVA, PLS, MLM, GLM 
(abbreviations explained in text).
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and modeling and, consequently, it shares with them some 
components. Nevertheless, an important difference exists in the 
goal and purpose between DM and traditional EDA in that DM 
is oriented towards applications to a larger extent rather than 
the underlying phenomena. That is, DM is less concerned with 
identifying the specific relations between the involved variables, 
rather its focus is on producing a solution that can generate 
useful predictions. Therefore, DM comprises traditional EDA 
techniques, as well as techniques like ANNs that can come out 
with valid predictions and still not having resources to identify 
the specific nature of the variable interrelations on which the 
predictions are made.

Exploratory methods
The central interest in functional brain studies resides in 
the electrical activity of neurons, which cannot be directly 
investigated by any magnetic resonance imaging (MRI) [26]. The 
human brain electrical activity is of paramount interest for both 
understanding and modeling the human brain, and for medical 
diagnosis and treatment as well, especially for developing 
automated patient monitoring, computer-aided diagnosis, and 
personalized therapy [26].

In data analysis, a widely spread task consists in finding an 
appropriate representation of multivariate data aiming to 
facilitate subsequent processing and interpretation. Transformed 
variables are hoped to be the underlying components, which best 
describe the intrinsic data structure and highlight the physical 
causes responsible for data generation. Linear transforms like 
PCA and ICA and are often envisaged to accomplish this task due 
to their computational and conceptual simplicity [26]. Generally, 
methods of unsupervised learning fall in the class of data-based 
(hypothesis-driven) analysis, such as eigen image analysis [27,28] 
or self-organizing maps (SOM) [29].

PCA and ICA: PCA is defined by the eigenvectors of the covariance 
matrix of the input data. In PCA, data are represented in an 
orthonormal basis determined by the second order statistics 
(covariances) of the input data. Such representation is adequate 
for Gaussian data [30]. PCA is a means of encoding second-
order dependencies in data by rotating the orthogonal axes to 
correspond to the directions of maximum covariance (Figure 
2). Asa linear transform, PCA is optimal in terms of least mean 
square errors over all projections of a given dimensionality. PCA 
decorrelates the input data but does not address the high-order 
dependencies. Decorrelation means that variables cannot be 
predicted from each other using a linear predictor, yet nonlinear 
dependencies between them can still exist. Edges, as for instance, 
defined by phase alignment at multiple spatial scales, constitute 
an example of high-order dependency in an image, similarly to 
shape and curvature are [26]. Second-order statistics capture the 
amplitude spectrum of images but not the phase [31]. Coding 
mechanisms that are sensitive to phase play an important role 
in organizing a perceptual system [32]. The linear stationary 
PCA and ICA processes can be introduced on the basis of a com- 
mon data model. The ICA model is a data-driven multivariate 
exploratory approach based on the covariance paradigm and 
formulated as a generative linear latent variables model [21]. ICA 

comes out with typical components like task-related, transiently 
task-related, and function-related activity without reference to 
any experimental protocol, including unanticipated or missed 
activations (Figure 3).

The assumptions behind the ICA model are the following: 

(i) the latent source signals are assumed statistically independent 
and at most one Gaussian, and 

(ii) the mixing process is assumed stationary and linear but 
unknown. 

ICA, based on higher order-statistics, transforms the ill-posed 
PCA problem into a well-posed one. The ICA decomposition is 
unique up to IC amplitude (scale), IC polarity (sign), and IC ranking 
(order) [26]. Technically, applying the ICA model amounts to the 
selection of an estimation principle (objective function) plus an 
optimization algorithm. Typical objective functions consist in 
maximization or minimization of 

(i) high-order statistical moments (e.g., kurtosis), 
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Figure 2 Stationary PCA model. The goal of PCA is to identify the 
dependence structure in each dimension and to come 
out with an orthogonal transform matrix W of size L × N 
from RN to RL, where L ≤ N, such that the L-dimensional 
output vector y(t)=Wx(t) sufficiently represents the 
intrinsic features of the input data x(t). Consequently, the 
reconstructed input data are given by x (t) =WTWx(t).

Figure 3 Stationary noiseless linear ICA model. Here s(t), x(t), , and 
A denote the latent sources, the observed data, and the 
(unknown) mixing matrix, respectively, whereas ai, i = 1, 
2, ..., M are the columns of A. Mixing is supposed to be 
instan- taneous,  so  there  is  no  time  delay  between  
the  source  variables  {si(t)} mixing  into observable (data) 
variables {xj(t)}, with i = 1, 2, ..., M  and j = 1, 2, ..., N .
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(ii) maximum likelihood (ML), 

(iii) mutual information (MI), or 

(iv) negentropy. 

For ICA model, statistical properties (e.g., consistency, asymptotic 
variance, robustness) depend on the estimation principle. 
Algorithmic properties (e.g., convergence speed, memory 
requirements, numerical stability) depend on the selection 
of the optimization algorithm. ICA is based on the concept of 
independence between probability distributions which, in its turn, 
relies on information theory. Entropy is a criterion for statistical 
independence widely employed. Terms like information and 
entropy are richly evocative with multiple meanings in everyday 
usage; information theory captures only some of the many facets 
of the notion of information (Figure 4).

Clustering analysis: Searching for meaningful patterns in data like 
biological ones, has been a permanent endeavor best typified by 
the taxonomy that arranged species into groups based on their 
similarities and differences [33]. Clustering is an important DM 
method for discovering knowledge in multidimensional data. 
Clustering analysis, alternatively called automatic classification, 
numerical taxonomy, typological analysis, amounts to grouping, 
segmenting or partitioning a set of objects into subsets (clusters), 
maximizing their degree of similarity within each cluster and 
minimizing their degree of dissimilarity if belonging to distinct 
clusters. Clusters may be 

(i) disjoint vs. over- lapping, 

(ii) deterministic vs. probabilistic, and 

(iii) flat vs. hierarchical. 

As for instance, k -means clusters are disjoint, deterministic, and 
flat.

There are four major approaches of clustering.

1. Hierarchical clustering: successive clusters are determined by 
means of previously established clusters;

2. Partitional (k -means) clustering: all clusters are iteratively 
determined simultaneously;

3. Model-based clustering;

4. Density-based clustering.

Hierarchical clustering is performed by 

(i) agglomerative methods (bottom- up), which merge the objects 
into successively larger clusters; 

(ii) divisive methods (top-down), which separate the objects into 
successively smaller clusters (Figure 5). 

In general, the merges and splits are determined in a greedy 
manner. A greedy algorithm is an algorithmic paradigm that 
follows the problem-solving heuristic of making the locally 
optimal choice at each stage [34] and further looking for a 
global optimum. Greedy algorithms find the globally, optimal 
solution for some optimization problems, but may fail in several 
other instances. Clustering algorithms are attractive for class 

identification in spatial databases but suffer from serious pitfalls 
when applied to large spatial databases [35].

The hierarchical k -means clustering is a hybrid approach for 
improving the performance of k -means algorithms. The k 
-means clustering method assumes that each data point is 
assigned to one cluster only [36]. Yet several practical situations 
suggest a soft clustering approach, where multiple cluster 
labels can be associated with a single data item, and each data 
point is assigned a probability of its association with more than 
one cluster [36]. A Gaussian mixture model with expectation-
maximization algorithm (GMM-EM) typifies fuzzy cluster analysis 
(FCA) [4]. The fuzzy c-means (FCM) clustering generate fuzzy 
partitions and prototypes for any set of numerical data. The 
clustering criterion employed to aggregate subsets of data items 
consists in a generalized least-squares (GLS) objective function 
[37]. Most clustering algorithms may include some choices of 
distance measures like Euclidean, Manhattan, or Mahal Nobis, 
an adjustable weighting factor that controls sensitivity to noise, 
acceptance of variable numbers of clusters, and outputs that 
include several measures of cluster validity [37]. Clustering by 
means of a symmetric or asymmetric distance measures makes 
an important distinction, which determines how the similarity of 

Figure 4 PCA and ICA compared for Gaussian and non-Gaussian 
data. 

Figure 5 Hierarchical clustering. Agglomerative methods (bottom-
up) merge the objects (observations) into successively 
larger clusters up to a single cluster grouping all objects. 
Divisive methods (top-down) separate the objects 
(observations) into successively smaller clusters down to 
clusters containing an object only. 
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two objects are calculated and, subsequently, their allocation to 
the same or different cluster. The results of hierarchical clustering 
are usually presented in dendrograms (Figure 6). Dendrograms 
are plotted after the calculation of a certain selected distance 
matrix and a linkage procedure has been opted for creating a 
picture on how merging can be employed to partition samples 
into subsets according to distance thresholds.

Partitional clustering decomposes directly a set of data items 
into a collection of disjoint clusters. Any criterion function to be 
minimized should stress on both local and global structure of data. 
In K -means clustering, the criterion function EK is the average 
squared distance of the data items from their nearest cluster 
centroids. K centroids are initialized and subsequently their 
positions are adjusted iteratively by first assigning the objects to 
the nearest clusters and then recomputing the centroids.

The stopping criterion of iteration is enforced by EK reaching 
insignificant further changes. Alternatively, each randomly chosen 
item may be successively considered and the nearest centroid 
consequently updated (Figure 7). The K -means algorithm is a 
most common approach and the simplest unsupervised learning 
algorithm to implement partitional clustering.

Model-based clustering assumes data as drawn from a 
distribution, which is a mixture of two or more clusters. Such 
approach finds best fitting models to available data and estimates 
the number of clusters [38].

Density-based clustering (DBSCAN) is a robust partitioning 
method introduced by Ester et al. back in 1996 [11]. It can 
discover clusters of arbitrary shapes and sizes from noisy data 
contaminated with outliers [38].

CA is a fundamental approach in unsupervised ML, including 
cancer research for classifying patients into groups according to 
their gene expression profile. As such, identifying the molecular 
profile of patients with good or bad prognostic, as well as 
elucidating the mechanisms of the disease itself can be carried 
out.

Whatever method or combination of methods would be used 
in exploratory analysis to discover new hypotheses (models) 
extracted directly from data, they have to be subsequently 
tested and verified by some more conventional statistical 
inferential methods of analysis. The combined information 
gathered from two or more methods may reveal structure in 
data that any single method could not have provided. The more 
an approach embeds prior knowledge that we are aware of 
about the structure to be discovered, the higher the chance of 
its detection. This suggests starting the analysis in an adequate 
Bayesian framework that incorporates all available information 
on the data and continuously updates the state of knowledge 
when new data are presented.

Functional neuroimaging
Functional MRI (fMRI), is a non-invasive neuroimaging modality, 
has emerged as a most convenient approach for mapping brain 
activated regions, both in health and in disease [39]. There are 
two most useful features of fMRI data sets fMRI signals are 
the characteristics, namely, no stationarity and distributional 
heterogeneity [40]. The analysis of large, quite complex, and 
heterogeneous functional neuro imaging data ought to start 
with an exploratory approach aiming to reveal the intrinsic 

 
Figure 6 Dendrogram of cluster analysis based on Bray-Curtis similarity. Den- drogram shape is twofold 

arbitrary: the order on the x -axis is irrelevant as clusters can be rotated around any clustering 
distance leading to 2n−1 different sequences, and the distance matrix depends on the settings used. 
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structure in data with no need for prior models and minimal 
statistical assumptions, yielding as non-committal as possible 
results. Exploratory data-driven methods are complementary 
to hypothesis-led methods of confirmatory data analysis (CDA); 
the representative time courses that are the outcome may be 
conceptualized as alternative hypotheses to the null hypothesis 
H0 (i.e., no activation) [41].

The hypothesis-driven (model-based) inferential methods used 
test specific hypotheses on the expected changes in blood 
oxygenation level dependence (BOLD) response. Such changes 
are specified as regressors in a multiple linear regression 
framework of the generalized linear model (GLM), and their 
relative weights are given by the regression coefficients (model 
parameters) like in Figure 8 [41].

In any multisubject/multisession experiments, for a voxel to 
represent the same anatomical location for all subjects/sessions 
under all conditions, raw data are spatially/temporally and 
ultimately mapped into a standardized coordinate space that 
accounts for differences in brain size and orientation, such as the 

stereotaxic space [42]. A convolution with an isotropic symmetric 
Gaussian kernel of fixed size is applied prior to statistical analysis. 
Data preprocessing involves some steps briefly presented 
hereafter. Spatial smoothing is recommended for: 

(i) match the spatial scale of hemodynamic responses among 
subjects/sessions; 

(ii) increase the SNR; 

(iii) better data match to the assumptions of the Gaussian 
Random Field theory (RFT) [41]; 

(iv) normalize the error distribution aiming to easier validate 
inferences based on parametric tests; 

(v) spatial smoothing of temporal autocorrelations to minimize 
errors in the estimated standard deviation (SD) by increasing the 
effective degrees of freedom (df) and decreasing its sensitivity 
to underlying temporal correlation structure [43]. Less spatially 
variable t-statistic images and lower thresholds (p<0.05) entail 
better detection of activations and improves the physiological 
relevance of statistical inference; 

(vi) in multisubject experiments, averaging is necessary to 
smooth the projected data down to a scale where homologies in 
functional anatomy are ex- pressed across subjects. 

Running more subjects will, nevertheless, improve statistical 
power much more than moving to higher fields. Apart from its 
benefits, Gaussian filtering degrades the spatial definition and 
complicates the statistical analysis since the noise can no longer 
be considered independent.

The GLM is applied voxel wise on the parameter map resulting 
from the smoothed data, which does not exploit the spatial 
correlation between voxels. Hence the observed time series 
at each voxel are linearly modeled by superimposing a model 
time course of activation and some residuals like noise and/or 
measuring errors. If a model of the residuals s exists, then the 
statistical significance of the regression coefficients and, implicitly, 
of the modeled hemodynamic changes can be calculated in each 
voxel via hypothesis testing [41].

Let the matrix X[T × V ] denote the fMRI data acquired in the 
experiment, where each matrix element xij denotes the observed 
value at time i, i = 1, 2, ..., T and voxel location j, j = 1, 2, ..., V, V 
is the total number of voxels in a volume (i.e., full scan) and T is 
the number time points (i.e., total number of scans in a session). 

Figure 7 Partitional clustering directly decomposes a collection 
of objects (observations) into a set of disjoint clusters 
based on a certain distance measure. It aims to group n 
observations into k clusters, such that each observation 
pertains to the cluster with the nearest mean called 
centroid, serving as a prototype of the cluster. 

Figure 8 Linear regression of fMRI data in the framework of generalized linear regression model (GLM). 
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Then the linear model equates as follows:

X = G + ,β ε 					                       (1)

where G [T × N] is the design matrix having the regressors as N 
column vectors. The row vectors of the matrix β[N × V] are the 
model parameters of the effects of interest, and the elements 
in the matrix s[T × V ] are the residuals of each voxel in each scan. 
Assuming no temporal correlations in data, a maximum likelihood 
(ML) estimate for the model parameters β is found by the least-
squares method (LSM) as follows:



-1= (X X) X Y,T Tβ 				                       (2)

The parameter selection is carried out by means of a contrast 
vector, c, which compares one or multiple parameter values. The 
multiple hypotheses testing is resolved in statistical parametric 
mapping (SPM) [6] by considering data as a lattice representation 
of a continuous Gaussian Random Field (GRF) including the 
dependencies introduced by the Gaussian spatial smoothing. As 
such, SPM performs a statistical test on the fitted parameters 
of the GLM and reveal activation at the spatial locations where 
the null hypothesis (i.e., no activation) is rejected. The average 
number of resells (resolution elements containing spatial 
information) available in the data before smoothing can be 
considered equal to the number of voxels V. After Gaussian 
spatial filtering, the average number of resells is reduced [44] 
down to:

3
1

resels ,
FWHMi i

V

=

=
Π                                                                                                                        (3)

where FWHMi is the Gaussian full width at half maximum of the 
i -th dimension, i = 1, 2, 3. The voxel wise test statistics form 
summary images known as statistical parametric maps, which 
are commonly assessed for statistical significance against the null 
hypothesis (e.g., no activation). The resulting map of such statistics 
is a representation of the spatial distribution of functional activity 
elicited by the experimental paradigm. Less spatially variable 
t-statistic images and lower thresholds (p<0.05) enforce better 
detection of activation and improve the physiological relevance 
of sub- sequent statistical inference.

During the last two decades fMRI has undergone a quick growing 
and refining as an interdisciplinary approach by itself and entered 
firmly in a vast spectrum of scientific disciplines like neuroscience, 
medical physics, psychology, political science, economics, and 
law, and so forth. At the same time, brand new approaches 
have showed up in data collection and processing, experimental 
design, image reconstruction and enhancement [45-49]. 

Concluding Remarks
Advanced rsfMRI and DTI techniques have provided means 
to view the hu- man brain connectome by assessing tract 
structure, tract connectivity, and functional connectivity. Cortical 
and white matter damage arising in brain injury can disrupt 
structural connectivity, thereby affecting patterns of functional 
brain activity and connectivity. DTI allows to investigate WM 
damage and to assist in understanding pathological changes in 
the structural connectivity. rsfMRI permits assessing large- scale 
functional connectivity and integrity of neuronal networks. These 
techniques may foster the development of imaging biomarkers 
of cognitive and neurobehavioral impairments.

Terabyte and petabyte-scale amount of data booming everywhere 
from business, society, science and engineering, medicine and 
every aspect of daily life has rendered the traditional data analysis 
methods unappropriated to efficiently handle unprecedentedly 
huge data sets. Novel techniques coagulated under the umbrella 
of DM are called to cope with recent evolution of information 
complexity aiming to discover new knowledge from newly 
acquired data and to statistically represent it as prior distributions 
suitable to validate novel hypotheses. By rapid strides, our society 
is moving from the data age to the information age with several 
benefits but some drawbacks as well.
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